-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathllm.py
142 lines (121 loc) · 4.89 KB
/
llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from model_config import MODEL_HOST
from typing import List
from cmdline import args
token_counter = 0
def increment_token_counter(new_tokens):
assert new_tokens >= 0
global token_counter
token_counter += new_tokens
print("Current token count = ", token_counter)
if MODEL_HOST == "openai":
import openai_generate
def generate(prompt: str, num: int) -> List[str]:
if args.token_limit is not None:
print("WARN: Using OpenAI model, which does not support token limit.")
return openai_generate.generate(prompt, num)
def generate_full(prompt: str) -> str:
if args.token_limit is not None:
print("WARN: Using OpenAI model, which does not support token limit.")
return generate(prompt, 1)[0]
# TODO
eos_token = None
bos_token = None
elif MODEL_HOST == "huggingface":
import torch
import huggingface_generate
from transformers import TextStreamer
_, model, tokenizer = huggingface_generate.load_model()
model_generation_token_args = huggingface_generate.get_model_generation_token_args(
tokenizer
)
# Needed to find end/beginning of sequence
eos_token = tokenizer.eos_token
bos_token = tokenizer.bos_token
# Needed to keep strings looking normal
def strip_bos(s):
while s.startswith(bos_token):
s = s[len(bos_token) :]
return s.lstrip()
def gen(
prompt, model_generation_args, num=1, return_hiddens=False, **kwargs
) -> List[str]:
args = {**model_generation_args, **kwargs}
num = num or 1
model_input = tokenizer(prompt, return_tensors="pt").to("cuda")
def helper(tid):
return tid not in tokenizer.all_special_ids
input_ntokens = sum(
sum(helper(tid) for tid in t) for t in model_input["input_ids"]
)
model.eval()
with torch.no_grad():
generate_dict = model.generate(
**model_input,
num_return_sequences=num,
output_hidden_states=return_hiddens,
return_dict_in_generate=True,
stopping_criteria=huggingface_generate.get_stopping_criteria(
tokenizer, model_input["input_ids"].size(1)
),
use_cache=True,
**args
)
ts = generate_dict.sequences
ntokens = sum(sum(helper(tid) for tid in t) for t in ts)
increment_token_counter(ntokens - input_ntokens)
rs = [strip_bos(tokenizer.decode(t, skip_special_tokens=False)) for t in ts]
if return_hiddens:
# Select features for last token by ignoring padding tokens
eos_idxs = []
for t in ts:
suffix = t[len(model_input["input_ids"][0]) :]
if tokenizer.eos_token_id in suffix:
eos_idxs.append(suffix.tolist().index(tokenizer.eos_token_id))
else:
eos_idxs.append(len(suffix))
layer_idx = -1
layer = [
generate_dict.hidden_states[eos_idxs[i] - 1][layer_idx][i, -1, :]
for i in range(num)
]
layer = torch.stack(layer, dim=0).reshape(num, -1)
return rs, layer
return rs
def generate(prompt: str, num: int, return_hiddens=False, **kwargs) -> List[str]:
model_generation_search_args = (
huggingface_generate.get_model_generation_search_args(num)
)
model_generation_args = {
**model_generation_token_args,
**model_generation_search_args,
}
return gen(prompt, model_generation_args, num, return_hiddens, **kwargs)
def generate_full(prompt: str, **kwargs) -> str:
streamer = TextStreamer(tokenizer)
model_generation_search_args = (
huggingface_generate.get_model_generation_search_args(1)
)
model_input = tokenizer(prompt, return_tensors="pt").to("cuda")
input_ntokens = model_input["input_ids"].size(1)
all_args = {
**(dict(streamer=streamer, max_new_tokens=10000)), # NOTE: used to be 1000
"return_dict_in_generate": True,
"stopping_criteria": huggingface_generate.get_stopping_criteria_full(
tokenizer, model_input["input_ids"].size(1)
),
**model_generation_search_args,
**kwargs,
}
model.eval()
r = None
with torch.no_grad():
model_result = model.generate(**model_input, **all_args)
ts = model_result.sequences
def helper(tid):
return tid not in tokenizer.all_special_ids
ntokens = sum(sum(helper(tid) for tid in t) for t in ts)
increment_token_counter(ntokens - input_ntokens)
r = strip_bos(tokenizer.decode(ts[0], skip_special_tokens=False))
return r
else:
assert False