-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapproximations.c
executable file
·159 lines (138 loc) · 6 KB
/
approximations.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// Copyright (c) 2014, 2015, Freescale Semiconductor, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Freescale Semiconductor, Inc. nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL FREESCALE SEMICONDUCTOR, INC. BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This file provides replacement trig functions which operate at reduced power,
// while still maintaining sufficient accuracy for sensor fusion.
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include "types.h"
#include "approximations.h"
// function returns an approximation to angle(deg)=asin(x) for x in the range -1 <= x <= 1
// and returns -90 <= angle <= 90 deg
// maximum error is 10.29E-6 deg
float fasin_deg(float x)
{
// for robustness, check for invalid argument
if (x >= 1.0F) return 90.0F;
if (x <= -1.0F) return -90.0F;
// call the atan which will return an angle in the correct range -90 to 90 deg
// this line cannot fail from division by zero or negative square root since |x| < 1
return (fatan_deg(x / sqrtf(1.0F - x * x)));
}
// function returns an approximation to angle(deg)=acos(x) for x in the range -1 <= x <= 1
// and returns 0 <= angle <= 180 deg
// maximum error is 14.67E-6 deg
float facos_deg(float x)
{
// for robustness, check for invalid arguments
if (x >= 1.0F) return 0.0F;
if (x <= -1.0F) return 180.0F;
// call the atan which will return an angle in the incorrect range -90 to 90 deg
// these lines cannot fail from division by zero or negative square root
if (x == 0.0F) return 90.0F;
if (x > 0.0F) return fatan_deg((sqrtf(1.0F - x * x) / x));
return 180.0F + fatan_deg((sqrtf(1.0F - x * x) / x));
}
// function returns angle in range -90 to 90 deg
// maximum error is 9.84E-6 deg
float fatan_deg(float x)
{
float fangledeg; // compute computed (deg)
int8 ixisnegative; // argument x is negative
int8 ixexceeds1; // argument x is greater than 1.0
int8 ixmapped; // argument in range tan(15 deg) to tan(45 deg)=1.0
#define TAN15DEG 0.26794919243F // tan(15 deg) = 2 - sqrt(3)
#define TAN30DEG 0.57735026919F // tan(30 deg) = 1/sqrt(3)
// reset all flags
ixisnegative = ixexceeds1 = ixmapped = 0;
// test for negative argument to allow use of tan(-x)=-tan(x)
if (x < 0.0F)
{
x = -x;
ixisnegative = 1;
}
// test for argument above 1 to allow use of atan(x)=pi/2-atan(1/x)
if (x > 1.0F)
{
x = 1.0F / x;
ixexceeds1 = 1;
}
// at this point, x is in the range 0 to 1 inclusive
// map argument onto range -tan(15 deg) to tan(15 deg)
// using tan(angle-30deg) = (tan(angle)-tan(30deg)) / (1 + tan(angle)tan(30deg))
// tan(15deg) maps to tan(-15 deg) = -tan(15 deg)
// 1. maps to (sqrt(3) - 1) / (sqrt(3) + 1) = 2 - sqrt(3) = tan(15 deg)
if (x > TAN15DEG)
{
x = (x - TAN30DEG)/(1.0F + TAN30DEG * x);
ixmapped = 1;
}
// call the atan estimator to obtain -15 deg <= angle <= 15 deg
fangledeg = fatan_15deg(x);
// undo the distortions applied earlier to obtain -90 deg <= angle <= 90 deg
if (ixmapped) fangledeg += 30.0F;
if (ixexceeds1) fangledeg = 90.0F - fangledeg;
if (ixisnegative) fangledeg = -fangledeg;
return (fangledeg);
}
// function returns approximate atan2 angle in range -180 to 180 deg
// maximum error is 14.58E-6 deg
float fatan2_deg(float y, float x)
{
// check for zero x to avoid division by zero
if (x == 0.0F)
{
// return 90 deg for positive y
if (y > 0.0F) return 90.0F;
// return -90 deg for negative y
if (y < 0.0F) return -90.0F;
// otherwise y= 0.0 and return 0 deg (invalid arguments)
return 0.0F;
}
// from here onwards, x is guaranteed to be non-zero
// compute atan2 for quadrant 1 (0 to 90 deg) and quadrant 4 (-90 to 0 deg)
if (x > 0.0F) return (fatan_deg(y / x));
// compute atan2 for quadrant 2 (90 to 180 deg)
if ((x < 0.0F) && (y > 0.0F)) return (180.0F + fatan_deg(y / x));
// compute atan2 for quadrant 3 (-180 to -90 deg)
return (-180.0F + fatan_deg(y / x));
}
// approximation to inverse tan function (deg) for x in range
// -tan(15 deg) to tan(15 deg) giving an output -15 deg <= angle <= 15 deg
// using modified Pade[3/2] approximation
float fatan_15deg(float x)
{
float x2; // x^2
#define PADE_A 96.644395816F // theoretical Pade[3/2] value is 5/3*180/PI=95.49296
#define PADE_B 25.086941612F // theoretical Pade[3/2] value is 4/9*180/PI=25.46479
#define PADE_C 1.6867633134F // theoretical Pade[3/2] value is 5/3=1.66667
// compute the approximation to the inverse tangent
// the function is anti-symmetric as required for positive and negative arguments
x2 = x * x;
return (x * (PADE_A + x2 * PADE_B) / (PADE_C + x2));
}